师资介绍 客户端下载 了解 010-83433328
高中辅导 高考试题库 pk10五码三期必中 赛车计划软件 北京赛车全天精准计划 家长课堂 高考辅导
当前位置:首页 > 高中辅导 > 高考 > 学科备考 > 数学 >
如何学好高中数学?高一数学函数重难点知识分析
时间:2019-03-05 15:30:08    |    来源:高中化学辅导网网    分享到           
推荐
摘要:

如何学好高中数学?高一数学函数重难点知识分析,函数在高考中的重要性不言而喻,与此同时,函数的难度也可想而知。函数的分类很多,也有很多不同的特性,计算时不仅要用到各种公式还需要能推倒变换,因此更加大了难度。我们就这样轻易放弃了吗?然而并不能,高中化学辅导网老师为你整理了如何学好高中数学?高一数学函数重难点知识分析,希望能够帮助到你!

如何学好高中数学?高一数学函数重难点知识分析,函数在高考中的重要性不言而喻,与此同时,函数的难度也可想而知。函数的分类很多,也有很多不同的特性,计算时不仅要用到各种公式还需要能推倒变换,因此更加大了难度。我们就这样轻易放弃了吗?然而并不能,高中化学辅导网老师为你整理了如何学好高中数学?高一数学函数重难点知识分析,希望能够帮助到你!

1. 函数的奇偶性

(1)若f(x)是偶函数,那么f(x)=f(-x) ;

(2)若f(x)是奇函数,0在其定义域内,则 f(0)=0(可用于求参数);

(3)判断函数奇偶性可用定义的等价形式:f(x)±f(-x)=0或 (f(x)≠0);

(4)若所给函数的解析式较为复杂,应先化简,再判断其奇偶性;

(5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性;

2. 复合函数的有关问题

(1)复合函数定义域求法:若已知 的定义域为[a,b],其复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定义域为[a,b],求 f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域(即 f(x)的定义域);研究函数的问题一定要注意定义域优先的原则。

(2)复合函数的单调性由“同增异减”判定;

3.函数图像(或方程曲线的对称性)

(1)证明函数图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上;

(2)证明图像C1与C2的对称性,即证明C1上任意点关于对称中心(对称轴)的对称点仍在C2上,反之亦然;

(3)曲线C1:f(x,y)=0,关于y=x+a(y=-x+a)的对称曲线C2的方程为f(y-a,x+a)=0(或f(-y+a,-x+a)=0);

(4)曲线C1:f(x,y)=0关于点(a,b)的对称曲线C2方程为:f(2a-x,2b-y)=0;

(5)若函数y=f(x)对x∈R时,f(a+x)=f(a-x)恒成立,则y=f(x)图像关于直线x=a对称;

(6)函数y=f(x-a)与y=f(b-x)的图像关于直线x= 对称;

4.函数的周期性

(1)y=f(x)对x∈R时,f(x +a)=f(x-a) 或f(x-2a )=f(x) (a>0)恒成立,则y=f(x)是周期为2a的周期函数;

(2)若y=f(x)是偶函数,其图像又关于直线x=a对称,则f(x)是周期为2︱a︱的周期函数;

(3)若y=f(x)奇函数,其图像又关于直线x=a对称,则f(x)是周期为4︱a︱的周期函数;

(4)若y=f(x)关于点(a,0),(b,0)对称,则f(x)是周期为2 的周期函数;

(5)y=f(x)的图象关于直线x=a,x=b(a≠b)对称,则函数y=f(x)是周期为2 的周期函数;

(6)y=f(x)对x∈R时,f(x+a)=-f(x)(或f(x+a)= ,则y=f(x)是周期为2 的周期函数;

5.方程k=f(x)有解 k∈D(D为f(x)的值域);

6.a≥f(x) 恒成立 a≥[f(x)]max,; a≤f(x) 恒成立 a≤[f(x)]min;

7.(1) (a>0,a≠1,b>0,n∈R+); (2) l og a N= ( a>0,a≠1,b>0,b≠1);

(3) l og a b的符号由口诀“同正异负”记忆; (4) a log a N= N ( a>0,a≠1,N>0 );

8. 判断对应是否为映射时,抓住两点:(1)A中元素必须都有象且唯一;(2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象;

9. 能熟练地用定义证明函数的单调性,求反函数,判断函数的奇偶性。

10.对于反函数,应掌握以下一些结论:(1)定义域上的单调函数必有反函数;(2)奇函数的反函数也是奇函数;(3)定义域为非单元素集的偶函数不存在反函数;(4)周期函数不存在反函数;(5)互为反函数的两个函数具有相同的单调性;(5) y=f(x)与y=f-1(x)互为反函数,设f(x)的定义域为A,值域为B,则有f[f--1(x)]=x(x∈B),f--1[f(x)]=x(x∈A).

11.处理二次函数的问题勿忘数形结合;二次函数在闭区间上必有最值,求最值问题用“两看法”:一看开口方向;二看对称轴与所给区间的相对位置关系;

12. 依据单调性,利用一次函数在区间上的保号性可解决求一类参数的范围问题

13. 恒成立问题的处理方法:(1)分离参数法;(2)转化为一元二次方程的根的分布列不等式(组)求解;

免责声明:本站所提供试题均来源于网友提供或网络搜集,由本站编辑整理,仅供个人研究、交流学习使用,不涉及商业盈利目的。 如涉及版权问题,请联系本站管理员予以更改或删除。
常见问题-在线答疑
立即扫描咨询

传递咨询   知晓动向

领取免费备考资料

扫一扫+关注
猜你喜欢
换一批 更多
友情链接
国际学校 EMBA 江苏自考 艺术生留学 指南者留学 幼儿园教案 求艺网 爱思学 优路教育 初中辅导 教育项目 邦博尔卫校网 教育培训 街舞培训班 出国留学 IT培训 101教育网 艺术类留学 考研辅导培训 java培训机构 在线视频课程 农商行招聘考试网 银行招聘网 教师网 事业单位招聘考试网
合作单位
公务员考试网 卫生人才网 山东高中化学辅导网 中小学辅导网 小学辅导 初中辅导 高中辅导
高中化学辅导网 Copyright © 2016-.All Rights Reserved 京ICP备11020372号-35 电子营业执照